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Introduction

The quadrennium 1975-1978 was a period of great

advance for solar-wind studies, a period that com-

bined exploration of new regions with increased

maturity in established fields of study. The

Helios, Pioneer, and Voyager spacecraft have been

exploring the inner and outer regions of the solar

wind. There has been a rebirth of the study of

possible relations between solar variability and

Earth's climate and weather, stimulated largely by

Eddy's [1976] investigation of the Maunder Mini-

mum; the solar wind may well prove to be a signif-

icant link in solar-terrestrial relations. Unique

coronal data from the SKYLAB 1973-1974 mission, in

combination with satellite and ground-based

observations, provided the basis for identifica-

tion of coronal holes as the main source of high-

speed solar wind. The interplanetary medium has

continued to serve as a laboratory for the study

of plasma processes that cannot yet be studied in

terrestrial laboratories, providing insights of

potential importance both for controlled fusion

research and for astrophysics. It is ironic that

such a productive period, the legacy of many past

space missions, was also a time of severely lim-

ited opportunity for new space investigations; the

outlook for the future is equally austere. Espe-

cially regrettable is the dearth of career oppor-

tunities for young scientists in this field; com-

parison of the bibliography of this report with

that of its predecessor 4 years ago shows few new

names. Despite such problems, research has con-

tinued with enthusiasm and much has been learned.

The present report will survey selected topics

related to the origin, expansion, and acceleration

of the solar wind and the plasma physics of the

interplanetary medium. Companion reports

[Papadopoulos, 1979; Scherrer, 1979; Smith, 1979]

deal with a number of closely related topics,

including the heliocentric distance and latitude

variation of the solar wind and its fluctuations,

topology of the interplanetary magnetic field,

morphology of solar-wind streams and shocks, sun-

weather studies, and interplanetary manifestations

of type-III bursts. Of the subjects that fall

within the scope of this report, the study of the

relationship between coronal holes and solar-wind

streams, and the associated revision of our ideas

about solar wind acceleration and heating, have

had the most impact; hence I review these topics

in considerable detail. In addition, I discuss

the topics of hydromagnetic waves and turbulence,

and interplanetary electrons, as items of particu-

lar importance during the past quadrennium. Limi-

tations of time and space require the omission of

a number of important topics from the text (the
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alternative is to try to cover everything, and

thus produce a completely superficial report);

however, the omitted topics are thoroughly covered

in the bibliography.

Besides the archived periodical literature,

important papers are to be found in the proceed-

ings of two major international conferences, The

International Symposium on Solar-Terrestrial

Physics [Williams, 1976], and Solar Wind 4

[Rosenbauer, 1978]; the individual papers are not

listed in the bibliography unless specifically

cited in the text. The proceedings of the SKYLAB

Coronal Hole Workshop [Zirker, 1977_a] is also a

valuable source. For more detailed reviews of the

topics discussed in this report, the reader may

consult a number of review articles [Dobrowolny

and Moreno, 1976, 1977; Hollweg, 1975_a, 1978a;

Holzer, 1977_, 1978; Zirker, 1977_; Barnes, T978].

For related reports for the previous quadrennium,

see Gosling [1975], Hirshberg [1975], Thomas

[1975], and Barnes [1975].

Coronal Holes and the Solar Wind

The concept that coronal holes are the primary

sources of fast solar wind streams grew and

attained wide acceptance during 1975-1978. The

rapid growth of this notion is due in large part

to the research associated with SKYLAB Solar Work-

shop I, which took place in 1975-1976 [Zirker,

1977_a,_]. The workshop activities were centered

on a unique set of data from the Apollo Telescope

Mount (ATM), a battery of advanced solar tele-

scopes aboard SKYLAB, during the 9-month mission

(May 1973-February 1974). About 80 scientists

with diverse backgrounds in optical, radio and

theoretical solar astronomy, interplanetary

physics, and cosmic ray physics participated in

the workshop research activities. This research

resulted in a number of seminal papers that subse-

quently have had a broad influence on the entire

field of solar wind studies.

Coronal holes are regions of abnormally low

density in the corona, which show up most clearly

in observations made above the Earth's atmosphere.

They lie within open magnetic configurations whose

footpoints are contained in large regions of the

solar surface with one dominant magnetic polarity.

The coronal holes of the SKYLAB period have been

intensively investigated; their properties are

thoroughly surmmarlzed in the review articles of

Bohlin and Hulburt [1977], Krieger [1977], Levine

[1977], Withbroe [1977], and Zirker [1977__b].

Observation of the solar wind near the ecliptic

plane over one solar cycle indicates that stable,

large-amplitude fast streams (peak velocity

_700 km/sec) are more common in years of declining

and minimum solar activity than near solar maximum

[Bame et al., 1976; Gosling et al., 1976_]; the

broadest streams occurred near solar minimum in

Paper number 9R0447. 596



597

OUTWARD
MAGNETIC

FIELD

\

INWARD
MAGNETIC

FIELD

•, FAST WlND

" tt SLOW WIND

',SLOW WIND f

FAST WIND _

_ CONFINED PLASMA

Fig. I. Schematic illustration of the model of

coronal holes as the source of high-speed solar

wind. The + and - indicate the polarity of the

coronal magnetic field in the holes, and the

shaded region outside the holes represents plasma

that is statically confined by closed magnetic

field lines.

1974. Thus, the SKYLAB period was a time of near-

minimum corona and long-lived, stable high-speed

wind streams. Moreover, the density, temperature,

and composition in high-speed streams seem to be

steadier and more uniform than in the lower veloc-

ity wind characteristic of solar maximum [Bame

et al., 1977_b; Feldman et al., 1976a].

Comparison of SKYLAB solar data and interplane-

tary data from the same period shows a very strong

correlation between large, near-equatorial coronal

holes and solar wind streams [Nolte et al., 1976b;

Sheeley et al., 1976, 1977; Hundhausen, 1977].

The polarity of the photospheric magnetic field

below the coronal hole corresponds to the polarity

of the interplanetary magnetic field in the asso-

ciated stream, and the maximum speed of the stream

increases with the area of the hole. Spectro-

scopic evidence shows an outward streaming velocity

of 16-20 km/sec in a coronal hole at the level

where SI IX and Mg IX form [Cushman and Rense,

1976]. Fast wind streams could often be asso-

ciated with coronal holes identified as equator-

ward extensions of long-lived polar holes [Bell

and Noel, 1976; Hundhausen, 1977]; this picture

implies that some fast streams observed in the

ecliptic plane would have originated ~30 ° away

from the solar equator [Hundhausen, 1977]. All

these results, together with the fact that coronal

holes apparently are magnetically open [Levine,

1977, 1978; Levine et al., 1977_a,b], very strongly

suggest that coronal holes were the main source of

fast solar wind at the SKYLAB epoch, and probably

throughout the declining and minimum phases of the

solar cycle. For a detailed review of the evi-

dence leading to this conclusion, see Hundhausen

[1977]. The model of coronal holes as the source

of fast solar wlnd is illustrated schematically in

Figure I.

The tenuous regions at the solar poles during

solar minimum are presumably coronal holes that

last throughout a solar cycle, perhaps disappear-

ing at solar maximum. The polar holes would then

be expected to produce fast solar wind, and the

solar wind should be faster at hlgh latitude than

in the ecliptic plane over much of the solar

cycle. Interplanetary radio scintillation obser-

vations from 1971 to 1975 showed the average solar

wlnd speed to increase with solar latitude, with a

mean gradient of 2.1 km/sec per degree of latitude

[Coles and Rickett, 1976]. However, in situ mea-

surements [e.g., Bame et al., 1977_; Rhodes and

Smith, 1975, 1976_,_] give both larger and smaller

gradients at particular epochs, and studies of

comet tail observations over a 75-year interval

show no systematic variation of speed with lati-

tude [Brandt et al., 1975]. These questions have

been reviewed by Dobrowolny and Moreno [1976] [see

also Nerney and Suess, 1975_; Pneuman, 1976]. The

variation in the observational results may be due

largely to temporal variations in the corona and

solar wind. An additional ambiguity arises from

the fact that most inferred gradients are based on

averages over solar longitude [Hundhausen, 1978].

A clear resolution of these issues will probably

not be attained until the International Solar

Polar Mission of the mid-1980's. The general

question of interplanetary gradients is discussed

in greater detail in a companion report [Smith,

1979].

Since coronal holes emanate from _20% of the

solar surface, the SKYLAB Workshop picture implies

that the solar wind comes from a relatively small

fraction of thesolar surface. Simple conserva-

tion arguments then lead to surprisingly large

values of magnetic field (_8 Gauss) at the coronal

base [Hundhausen, 1977]. Potentlal-field calcula-

tions of the coronal magnetic field based on maps

of the photospheric field, when correlated with

interplanetary magnetic measurements, confirm that

only a relatively small fraction of the photo-

spheric area connects via open field lines to the

interplanetary field [Levlne et al., 1977_.a,_].

Levine et al. found that those regions which do

connect lie beneath coronal holes (sometimes at

high latitude!), that the areas of open flux tubes

expand much more (X40-120) than would radial

tubes, and that the fastest solar wind streams

seem to come from those tubes that expand least in

cross-sectional area [see also Nolte et al.,

1976_]. Moreover, the best-fit models indicate

that only about 10% oF the solar surface is open

to the solar wind, in which case even coronal

holes contain some regions of closed field.

Burlaga et al. [1978a] extrapolated the observed

values of the interplanetary field inwards, and

used potential-field models to infer the photo-

spheric field in the source region, which could

then he compared with the measured photospheric

field. The inferred photospheric field (average

9 Gauss) was consistent with the measured field in

range and average, but not in all detail. In some

cases the interplanetary field seems to correlate

with open-field regions not obviously related to

coronal holes [Burlaga et al., 1978_; Levine,
1978].

If the solar wind comes from a fairly small

fraction of the surface, conservation arguments

also lead to high values of mass and energy flux
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in the low corona [Hundhausen, 1977]. The high

mass flux implies acceleration of the wind lower

in the corona than had previously been expected,

but does not greatly change the expected rate of

total particle output. The inferred energy flux

(_5 x 105 erg sec -I) implies a total power input to

the solar wind several times larger than pre-

viously estimated, and the flux is too high to be

consistent with thermal conduction as the sole

energy transport mechanism (at least for coronal

temperatures currently regarded as acceptable).

Moreover, for such high fluxes the solar wind must

be the dominant energy loss mechanism for coronal

holes [Hundhausen, 1977; Kopp and Orrall, 1977].

An abundance of evidence points to coronal

holes as the source of fast solar wind; this is

the viewpoint that will be taken in our subsequent

discussion of solar-wind energetics. However, it

should be borne in mind that most of the evidence

on this question is data from about one year of

one solar cycle. Even during that period the

correspondence between fast streams and coronal

holes is not one-to-one [Burlaga et al., 1978a;

Rickett et al., 1976]. The apparent exceptions

may reflect the disappearance of coronal holes as

optical (but not as magnetic) features as they

evolve [Levine, 1978], limitations of analysis

techniques and/or available data, or simply the

fact that regions other than coronal holes can

produce high-speed wind. Moreover, the fast

streams of 1973-1975 may not be typical of all

solar minima [Gosling et al., 1977_]. The idea

that coronal holes are the main source of high

speed streams, and that such streams regularly

appear in the ecliptic plane near solar minimum,

must be tested over subsequent solar cycles.

Acceleration and Heating of the Solar Wind

Most recent theoretical work on the accelera-

tion and heating of the solar wind has centered on

the working hypothesis of coronal holes as the

source of the wind. As reported above, elementary

arguments strongly suggest that thermal conduction

cannot be the main heat transport mechanism in

flows out of coronal holes. This point was made

strikingly clear in the empirical model of a polar

coronal hole due to Munro and Jackson [1977].

They used observations from the SKYLAB white light

coronagraph to determine the three-dimensional

density structure within a polar coronal hole from

2 to 5 R s. They found the increase of the hole's

cross-sectional area from the surface to 3 R S to
be 7 times greater than that of a radial cone.

Under the assumption that the solar wind coming

out of this hole was similar to that of high-speed

streams in the ecliptic, they inferred radial

profiles of flow speed and effective pressure.

The velocity profile was much steeper than in

radlal-flow models, the sonic point lying between

2.2 and 3 R S. One important consequence of the

rapid expansion is that the flow becomes com-

pletely collisionless within _4 R S.

The effective pressure profile can be converted

to a profile of "effective temperature," which

increases out to _4 R S or beyond, implying

extended energy deposition [either heating or work

due (for example) to hydromagnetic wave pressure].

In particular, thermal conduction could not pro-

duce an increasing effective temperature profile.

These conclusions are generally consistent with

the empirical model of Rosner and Vaiana [1977],

which was based on X-ray, EUV, and radio observa-

tions rather than white light data. In particu-

lar, they find the sonic point to lie above the

temperature maximum, and conclude that an addi-

tional energy supply (besides thermal conduction)

is required to drive streams from coronal holes.

Much work has centered on developing theoreti-

cal models of the flow in such a diverging field

geometry [see the review by Suess, 1978]. Kopp

and Holzer [1976] calculated models of one-

dimensional expansion in prescribed flux tubes

whose cross sections increase faster than r 2.

They showed that for fixed wind speed (thus fixed

energy per particle), two or more critical points

can arise in the dynamical equations if the flux

tube expands rapidly enough. The flow must pass

through the first critical point, suggesting that

the sonic point may lie low in the corona for

expansion from coronal holes. However, the poly-

tropic approximation implies different energy

deposition profiles for the different models, so

that the calculations of Kopp and Holzer do not

clearly separate the effects of flow divergence

from heating. Their work was extended by

Steinolfson and Tandberg-Hanssen [1977], who

replaced the polytropic equation of state with the

energy equation, with thermal conduction as the

only heat transport process. Their numerical

solutions of the dynamical equations give results

qualitatively similar to those of Kopp and Holzer.

They conclude that their results are a poor repre-

sentation of high-speed interplanetary streams,

reinforcing the conclusion that streams from

coronal holes are not driven by thermal conduction

alone. (Radial-flow models of Nerney and Barnes

[1977, 1978] also support this conclusion.)

Holzer [1977_] has studied the problem in a

very general way, investigating various forms of

flux tube divergence, energy deposition, and

momentum addition. He showed that in certain

flow-tube geometries, the heating by thermal con-

duction can be enhanced, possibly to the point of

eliminating the need for another heating mecha-

nism. However, he points out that this is a qual-

itative conclusion, and that it is not clear that

a realistic conduction-driven wind model is pos-

sible. Holzer also emphasized the importance of

an accurate description of electron heat transport

in wind models. This problem is especially diffi-

cult in the context of coronal holes, because the

rapid expansion leads to colllsionless flow near

the Sun. In particular, the electrons must be

described kinetically, and it is possible that

local descriptions of electron dynamics are inade-

quate [Scudder and Olbert, 1978]; this problem

will be discussed in a later section.

Suess et al. [1977] calculated a series of mag-

netohydrodynamic models of the Munro-Jackson

coronal hole, approximating the flow as quasi-

radial [Suess and Nerney, 1975_], and using a

polytropic equation of state. The density bound-

ary condition (a latitude profile at fixed radius)

was inferred from the Munro-Jackson empirical

model, and was not varied. Corresponding boundary

conditions on temperature and magnetic field were

varied (under certain empirical constraints) and

served as "free parameters" defining the series of

models. Each calculated model yielded the spatial

distribution of density in the hole and the geom-

etry of the hole boundary, which were then com-

pared to the Munro-Jackson model. The best-

fitting MHD model corresponded to boundary
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conditions(at 2 RS)of temperaturedecreasing
from2.5 x 106K at holecenter to 1.25x 106Kat
the edge,andmagneticfield decreasingfrom1 G
at the centerto 0.5 Gat the edge. Theflow
speedcalculatedat holecenter increasedfrom
150km/secat 2 RS to 350km/secat 5 RS. The
profile inferredby MunroandJacksonwassomewhat
steeper(<i00km/secto 450km/sec),but this
latter profile wasbasedon the areaexpansionof
the entire hole, so that the agreementbetweenthe
empiricalandMHDmodelsis probablyadequate.
Suesset al. find that velocity andtemperature
havetheir maximumat hole centerat all dis-
tances. Theheatingimplicit in the polytrope
modeloccursmostlynearthe centerof thehole,
with little or noneat the edge,andvariesin
proportionto the field strengthat 2 RS. This
modelis generallya satisfactorypicture of flow
in a coronalhole. However,it shouldbenoted
that the modelmaynot beunique(the authors
point out a difficulty in reconcilingthemodel
with photosphericfield observations),andthat
polytroplcmodelsarenot necessarilyreliable for
drawingconclusionsaboutenergydeposition.

Asdiscussedabove,the associationof fast
streamswith coronalholesseemsto require
extendedenergydeposition(heatingor work)in
thewindfar beyondthe coronalbase. It is rea-
sonable,andcurrently fashionable,to suppose
that hydromagnetlcwavesof solar origin account
for the extendedaccelerationand/orheating,
althoughlittle firm observationalevidenceexists
to confirmor denythis hypothesis. It haslong
beenrecognizedthat windmodelsincludingAlfv4n
or magnetoacousticwaveshavehigher flowspeeds
thananalogousmodelswithoutwaves. Jacques
[1977_a,_;seealso Hollweg,1978_]recentlyshowed
that windspeedsof ~700km/seccanreadily be
attainedin Alfv4nwavedrivenradial flowmodels.
Hollweg[1978_d]studiedthe propagationof small-
amplitudeAlfv_nwavesin a realistic modelof the

large-amplitudehydromagneticwavesandturbu-
lence. This fact, andthe interest in hydromag-
netic wavesasa possiblewindaccelerationor
heatingmechanism(seepreceding),havemotivated
a numberof theoretical andobservationalstudies
of interplanetaryhydromagneticfluctuations [see
the reviewof Barnes,1978]. It haslongbeen
establishedthat muchof the solar wind(espe-
cially hlgh-speedstreamsandtheir trailing
edges)exhibits fluctuations that are nearly
Alfv_nlc (constantmagneticfield strength and

plasma density), propagating outward from the Sun.

Five years ago, most theorists envisaged these

fluctuations as nearly plane waves whose spatial

variation should be describable by geometrical

hydromagnetics. This viewpoint now appears to be

inconsistent with observation; measured directions

of minimum magnetic variance do not agree with

predictions of the elkonal (geometrical) theory

[Burlaga and Turner, 1976; Solodyna and Belcher,

1976], and two-spacecraft constraints on direction

of wave norma%s do not agree with mlnimum-variance

directions [Denskat and Burlaga, 1977]. Although

these studies were based on limited data sets, and

cannot be regarded as definitive, they do strongly

suggest that the eikonal description is

inadequate.

If the eikonal approximation fails, constant-

phase surfaces must be curved on a scale compara-

ble to the fluctuation "wavelength." This curva-

ture and the characteristic power law spectra of

interplanetary fluctuations suggest that it may be

more useful to think of interplanetary Alfv_nic

fluctuations as turbulence rather than waves. The

two viewpoints are of course equivalent in the

small-amplitude limit. However, in large-

amplitude turbulence, part of the fluctuation

spectrum may well be associated with nonlinear

phenomena that are not easily incorporated in a

wave picture. Thus, attempts to analyze inter-

planetary turbulence in terms of a superposition

solar atmosphere, for a postulated wave source of, for example, Alfv_n and magnetoacoustic waves

near the top of the convection zone. He found

that the wave power output is strongest near a

series of resonant periods (<1.6 hr), and that

enough power to significantly affect the solar

wind may reside in these peaks. Hollweg [1978_]

has pointed out that the transverse wave numbers

associated with observed photospheric motions

would not send magnetoacoustic waves into the

corona if transmission from the photosphere were

correctly described by the linearized theory of

transmission through a thin boundary. However,

this model may not be realistic because of geomet-

rical effects and nonlinear modification of the

wave spectrum. Wentzel [1977_a] has argued (essen-

tially by dimensional analysis) that the Alfv_n

mode is the hydromagnetic wave mode least affected

by nonlinear dissipation in the outer corona;

however, magnetoacoustic waves may be generated as

well as dissipated in the corona [Hollweg, 1978a;

Wentzel, 1978]. Auer and Rosenbauer [1977] sug-

gested that measurements of proton thermal anlsot-

ropy and its variation are consistent with fast-

wave heating of the outer corona, but pointed out

that this interpretation may not be unique [cf.

Hollweg, 1978_a].

Interplanetary Hydromagnetic Waves and Turbulence

The interplanetary medium provides the best

presently available laboratory for the study of

are not strictly self-consistent. On the other

hand, there is at present no adequate theory of

nonlinear turbulence, and mode superposition has

generally been adopted as a working hypothesis.

Sarl and Valley [1976] and Neugebauer et al.

[1978] have carried out data studies under the

mode-superposition hypothesis, and find evidence

for a small magnetoacoustic component in some data

periods. The small but nonzero fluctuations of

magnetic field strensth found by Burlaga and

Turner [1976] even during the purest Alfv_nic

periods are also consistent with the presence of a

magnetoacoustic component. These investigations

were based on data sets too small for general con-

clusions about the character of compressive compo-

nents of turbulence, and much more work is needed.

The large amplitude character of interplanetary

waves presents formidable theoretical problems.

In this area the greatest progress in recent years

is probably the numerical simulation of test par-

ticles in large-amplltude magnetoaeoustic waves

[Matsumoto, 1977]. Matsumoto found that as wave

amplitude increases, particle trapping becomes

important and apparently can inhibit the Landau

damping process. The processes of trapping and

Landau damping are expected to compete with non-

linear steepening of magnetoacoustic waves, so

that magnetoacoustlc shock formation in the solar

wind may be quite different from that envisaged by

magnetohydrodynamics [Barnes and Chao, 1977].
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Thesestudiesrepresentfirst stepstowardunder-
standingthe evolutionof simplewavesin colli-
sionlessplasma.Futureprogressis likely to
requiresimulationstudiesusinglarge computers.

Theoreticalstudiesof collislonless turbulence
(asopposedto simplewaves)sofar havebeen
limited.to the caseof weakturbulence. Goodrich
[1978]andHollweg[1978_c]haveusedthe quasi-
linear approachto investigatethe developmentof
velocity distributions in the presenceof turbu-
lence, andto analyzethe force exertedon the
plasmaby the turbulencefield. Jacques[1977_]
useda somewhatdifferent (Lagranglan)technique
to studythis klnd of force, but sofar only in
the MHDapproximation.

Solar-WindElectrons

Thepast quadrenniumhasbroughta numberof
discoveriesandinsights aboutthe electroncompo-
nentof the solar wind. It is nowclear that the
electronvelocity distribution is not a straight-
forwardconsequenceof either collislon-dominated
or exosphericflow, but is rather in a subtle
intermediatestate. Theelectronvelocity distri-
butioncanbeseparatedinto a low-energy(560eV)
"core" andhlgh-energy"halo" [Feldmanet al.,
1975]. Thenearly isotropic Maxwelliancoredis-
tribution is strongly influencedby Coulombcolli-
sions [Feldmanet el., 1975,1978_]. Thehalo
component,onthe otherhand,varies from
bi-Maxwellian[Feldmanet el., 1975]in low-speed
solar wind, to a stronglybeamed(or "strahl")
state [Rosenbaueret al., 1976,1977;Feldman
et el., 1978_]in high-speedstreams,andis not
dominatedby Coulombcollisions (at least not in a
local sense). Heatconductionin the windis
primarily dueto thehalo, either by convectionof
the halo relative to the core [Feldmanet al.,
1975]or by the beamingof the "strahl"
[Rosenbaueret al., 1976].

Thesimplestmodelof a core-halodistribution
Is that of a "fluid" coreand"exospheric"halo;
in this picture thehalo containsa recordof con-
ditions at the "exobase."Feldmanet al. [1978b]
infer anexobaselying betweeni0 and30RSfrom
their high-speedstreamdata. OgilvieandScudder
[1978]studiedthe runof coreandhalo tempera-
tures between 0.45 and 0.85 AU and showed that

extrapolation inward gives equality of the two

temperatures at radial distance _2-15 R S. These

results generally support the mixed fluid-

exosphere model. However, the halo population can

be relatively isotropic, especially in low-speed

streams, strongly suggesting that its evolutlon is

not purely exospheric. It is possible that the

velocity distributions become unstable; the

resulting instability could isotropize the halo

velocity distribution and regulate heat flux

[Evlatar and Schulz, 1976; Feldman el al.,

1976b,_; Gary, 1978_,b; Gary et al., 1975a,_;

Lakhina, 1977; Schwartz, 1978; Singer, 1977;

Singer and Roxburgh, 1977]. The concept of heat

flux regulation by microinstabillty, and a related

method of closing the plasma moment equations, has

been discussed in detail by Hollweg [1976, 1978a].

Scudder and Olbert [1978] have examined the

electron distributions from a somewhat different

viewpoint. They studied the global form of the

electron velocity distribution predicted by the

Krook kinetic equation, assuming on__q!X Coulomb

collisions. This model recovers the core-halo

form, the core being dominated by collisions as in

previous models. The halo population is more

nearly collisionless, but is nevertheless governed

to a large degree by rare Coulomb collisions. In

particular, halo electrons with sunward velocities

have been scattered backward by Coulomb collisions

occurring beyond the observer (l-lO AU). Thus,

the halo population has a memory not only of con-

ditions near the Sun, but also of regions beyond

1 AU. The predicted velocity distributions are

reasonable representations of observed ones. The

work of Scudder and Olbert shows that the halo

particles can be understood without invoking wave-

particle interactions, and indicates that a purely

local description of electron dynamics may not be

adequate.

The Next Quadrennium and Beyond

Most of the research discussed above was con-

cerned with data taken near solar minimum. In

contrast, solar-wind studies will concentrate on

observations from the rising and maximum phases of

the solar cycle. The planetary missions

Pioneer I0 and ii and Voyager i and 2 will con-

tinue to monitor the interplanetary medium during

"cruise mode"; Earth-orbiting IMP 7 and 8 continue

to operate. ISEE-3 (launched in 1978) will con-

tinually observe the solar wind _0,01 AU from the

Earth. The Solar Maximum Mission, scheduled for

launch in 1979, will focus on phenomena associated

with the active Sun; this spacecraft will be com,

plemented by manned Spacelab missions. Further in

the future, the International Solar Polar Mission

(launch in 1983) will make the first in situ

observations of the solar wind far from the

ecliptic. Several other solar and heliosphere

missions have been proposed for starts in the

1980's. The most exciting of these, from the

standpoint of solar-wind dynamics, would be the

Solar Probe [see Neugebauer and Davies, 1978],

which would reach a perihelion of _ R s. For a

summary of the status of present and future mis-

sions, see the NASA Solar Terrestrial Programs

Five-Year Plan [1978].
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